首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3256篇
  免费   126篇
  国内免费   246篇
  2023年   15篇
  2022年   27篇
  2021年   39篇
  2020年   38篇
  2019年   58篇
  2018年   37篇
  2017年   49篇
  2016年   48篇
  2015年   48篇
  2014年   81篇
  2013年   106篇
  2012年   53篇
  2011年   133篇
  2010年   75篇
  2009年   180篇
  2008年   196篇
  2007年   207篇
  2006年   177篇
  2005年   150篇
  2004年   158篇
  2003年   119篇
  2002年   70篇
  2001年   62篇
  2000年   64篇
  1999年   76篇
  1998年   82篇
  1997年   61篇
  1996年   59篇
  1995年   62篇
  1994年   72篇
  1993年   70篇
  1992年   72篇
  1991年   74篇
  1990年   61篇
  1989年   53篇
  1988年   60篇
  1987年   74篇
  1986年   102篇
  1985年   76篇
  1984年   90篇
  1983年   34篇
  1982年   63篇
  1981年   54篇
  1980年   52篇
  1979年   43篇
  1978年   9篇
  1977年   16篇
  1976年   12篇
  1975年   2篇
  1974年   4篇
排序方式: 共有3628条查询结果,搜索用时 109 毫秒
21.
Summary Soil tests, plant performance, and plant tissue analyses were used to study the availability of sulfur to wetland rice in 30 Philippine soils. The critical concentrations of available sulfur by the calcium phosphate, lithium chloride, ammonium acetate, and hydrochloric acid extractions were 9, 25, 30, and 5 mg/kg, respectively. The critical total sulfur limits were 0.11% in the shoot at maximum tillering 0.055% in the straw at maturity, and 0.065% in the grain. The critical N:S ratio was 15 in the shoot at maximum tillering, 14 in the straw at maturity, and 26 in the grain. The critical sulfate-sulfur limit was 150 mg/kg in the shoot at maximum tillering and 100 mg/kg in the straw at maturity. The critical sulfate-sulfur/total sulfur percentage ratio was 15% in the shoot at maximum tillering and the straw at maturity. Plant performance, judged by appearance and yield of dry matter, straw, and grain, was generally poorer in the sulfur deficient soils than in the other soils. Although the calcium phosphate and ammonium acetate methods gave a better correlation between plant performance and available sulfur than the others, all four methods separated sulfur-deficient soils from non-deficient ones. The hydrochloric acid method merits further study because it is simple and versatile.  相似文献   
22.
Nitrogen is the major growth-limiting nutrient for marine algae. One potential source of nitrogen for marine algae is ammonium released by invertebrates. Many mid-intertidal reefs in northeastern New Zealand are dominated by a close association between the honeycomb barnacle Chamaesipho columna and an encusting brown alga Pseudolithoderma sp. Growth of Pseudolithoderma was enhanced in the presence of live C. columna, which released ammonium at a greater rate than the maximum rate of ammonium uptake by Pseudolithoderma. Algal tissue on barnacle tests had a lower C:N ratio than tissue located more than 2 cm from the nearest barnacle, suggesting the barnacle is an important source of nitrogen for the alga. The role of nutrient exchange in determining ecological patterns of species in marine communities is discussed.  相似文献   
23.
The effect of iron deprivation on the expression of outer membrane proteins and the ability to use heme as an iron source by uropathogenic Proteus mirabilis , Pr 6515, was studied. Examination of iron-restricted bacteria showed three outer membrane proteins ranging from 66 to 75 kDa to be affected by iron restriction, as well as a newly expressed 64-kDa protein. These proteins were induced within 15 minutes of iron-deprivation. The strain grew in the presence of ferric citrate, hemin and hemoglobin as iron sources, but could not use transferrin, lactoferrin or siderophores from exogenous sources. The 64- and 66-kDa proteins showed hemin-binding activity by affinity chromatography, and both reacted in Western blots with sera from mice transurethrally infected with the same strain. We suggest that P. mirabilis expresses iron-regulated outer membrane proteins that could be involved in heme uptake and may have a role in pathogenesis.  相似文献   
24.
I.J. Bingham  R.M. Rees 《Plant and Soil》2008,303(1-2):229-240
Six to seven week old red clover plants (Trifolium pratense L. cv Merviot) were used to investigate the time-course of root senescence following complete and permanent excision from the shoot. Plants were grown in sand culture watered with nutrient solution. After excision of the shoots, roots were left in situ and sampled over a period of up to 42 days. Respiration rate began to decrease immediately after excision, reaching 50% of its initial value after 24 h. The decline involved a reduction in the capacity of the respiratory pathways as measured in the presence of an uncoupler (FCCP) and exogenous glucose. The reduction in respiration could be prevented by supplying 100 mM sucrose to excised roots incubated in nutrient solution at the time of excision, but not 4–5 days after excision. There was a steady reduction in the protein and soluble sugar concentrations from the time of excision and a smaller reduction in starch. Free amino acid concentrations increased immediately after excision, but the temporal dynamics differed between individual amino acids. The total concentration of free amino acids rose to a maximum value 6–13 days after excision, before declining. Under these conditions roots survived for a remarkably long period of time. Depending on the experiment, cell viability, measured as the percentage of cells with positive turgor, was unchanged for at least 20 days, and complete loss of viability was not observed until 34–42 days after excision. There was no appreciable loss of N from the roots until cell viability declined significantly. The potential implications of these results for modelling and management of N cycling in cropping systems is discussed briefly.  相似文献   
25.
Centaurea maculosa (Lam.) (spotted knapweed) reduces wildlife and livestock habitat biodiversity and increases erosion. Nutrient availability to plants may be used to accelerate succession away from spotted knapweed. Early‐successional plant communities often have high nutrient availability, whereas late‐successional communities are often found on lower nutrient soils. We hypothesized that removal of nutrients would change the competitive advantage from spotted knapweed to Pseudoroegneria spicatum (bluebunch wheatgrass) (late seral). In two addition series matrices, background densities of Secale cereale (annual rye) and Elymus elimoides (bottlebrush squirreltail) (3,000 seeds/m2) were used to remove nutrients from the soil. In another set of addition series matrices, nitrogen (33 kg/ha) or phosphorus (33 kg/ha) were added to the soil. Nutrient analysis of soil and vegetation indicated that annual rye and bottlebrush squirreltail reduced nutrient availability in soils. In another matrix, neither a background density nor nutrients were added. Data were fit into Watkinson's curvilinear model to determine the competitive relationship between bluebunch wheatgrass and spotted knapweed. This allowed comparison of the equivalence ratios (C) generated from each addition series. The C parameters are the per‐plant equivalent of bluebunch wheatgrass or spotted knapweed and can be interpreted as the ratio of intra‐to‐interspecific competition. The C parameters are also the equivalence ratio of the number of spotted knapweed it takes to have equivalent effect on bluebunch wheatgrass or the number of bluebunch wheatgrass having the equivalent effect on spotted knapweed. Without nutrient manipulation, spotted knapweed was more competitive than bluebunch wheatgrass. The C for bluebunch wheatgrass was 0.17, indicating that 0.17 knapweed plants were competitively equivalent to one wheatgrass. Annual rye changed the competitive balance in favor of bluebunch wheatgrass (C = 9.9). Addition of nitrogen, phosphorus, or the mid‐seral species did not change the competitive relationship between the two species. This preliminary study suggests that succession from spotted knapweed to late‐seral bluebunch wheatgrass community may be accelerated by altering resource availability.  相似文献   
26.
27.
N-stable isotope analysis of macroalgae has become a popular method for the monitoring of nitrogen pollution in aquatic ecosystems. Basing on changes in their δ15N, macroalgae have been successfully used as biological traps to intercept nitrogen inputs. As different nitrogen sources differ in their isotopic signature, this technique provides useful information on the origin of pollutants and their extension in the water body. However, isotopic fractionation potentially resulting from microbial nitrogen processing, and indirect isotopic variations due to effects of physicochemical conditions on algal nutrient uptake and metabolism, may affect anthropogenic N isotopic values during transportation and assimilation. This in turn can affect the observed isotopic signature in the algal tissue, inducing isotopic variations not related to the origin of assimilated nitrogen, representing a “background noise” in isotope-based water pollution studies.In this study, we focused on three neighbouring coastal lakes (Caprolace, Fogliano and Sabaudia lakes) located south of Rome (Italy). Lakes were characterized by differences in terms of anthropogenic pressure (i.e. urbanization, cultivated crops, livestock grazing) and potential “background noise” levels (i.e. nutrient concentration, pH, microbial concentration). Our aim was to assess nitrogen isotopic variations in fragments of Ulva lactuca specimens after 48 h of submersion to identify and locate the origins of nitrogen pollutants affecting each lake. δ15N were obtained for replicated specimens of U. lactuca spatially distributed to cover the entire surface of each lake, previously collected from a benchmark, unpolluted site. In order to reduce the environmental background noise on isotopic observations, a Bayesian hierarchical model relating isotopic variation to environmental covariates and random spatial effects was used to describe and understand the distribution of isotopic signals in each lake.Our procedure (i) allowed to remove background noise and confounding effects from the observed isotopic signals; (ii) allowed to detect “hidden” pollution sources that would not be detected when not accounting for the confounding effect of environmental background noise; (iii) produced maps of the three lakes providing a clear representation of the isotopic signal variation even where background noise was high. Maps were useful to locate nitrogen pollution sources, identify the origin of the dissolved nitrogen and quantify the extent of pollutants, showing localized organic pollution impacting Sabaudia and Fogliano, but not Caprolace. This method provided a clear characterization of both intra- and inter-lake anthropogenic pressure gradients, representing a powerful approach to the ecological indication and nitrogen pollution management in complex systems, as transitional waterbodies are.  相似文献   
28.
The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20 mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops.  相似文献   
29.
30.
Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号